S-shaped connected component for the fourth-order boundary value problem
نویسندگان
چکیده
منابع مشابه
Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملA Note on a Fourth Order Discrete Boundary Value Problem
Using variational methods we investigate the existence of solutions and their dependence on parameters for certain fourth order difference equations.
متن کاملFourth-order four-point boundary value problem on time scales
and Applied Analysis 3 Using the initial conditions 2.3 , we can deduce from 2.2 for φ and ψ the following equations: φ t η ζ t − ξ1 ∫ t ξ1 ∫ τ ξ1 q s φ σ s ΔsΔτ, 2.5
متن کاملMultiple Positive Solutions to a Fourth-order Boundary-value Problem
We study the existence, localization and multiplicity of positive solutions for a nonlinear fourth-order two-point boundary value problem. The approach is based on critical point theorems in conical shells, Krasnosel’skĭı’s compression-expansion theorem, and unilateral Harnack type inequalities.
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2016
ISSN: 1687-2770
DOI: 10.1186/s13661-016-0699-z